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Chapter 8

ROTATIONAL   MOTION -- PART   I

A.)  Preliminary Comments and Basic Definitions:

1.)  We are about to draw an almost perfect parallel between translational
and rotational motion.  That is, every translational concept so far covered (i.e.,
kinematics, Newton's Laws, energy considerations, momentum, etc.) has its
rotational counterpart.  The next two chapters will focus on those parallels and
the general analysis of rotational systems.

2.)  The radian angular measure:

a.)  Consider a circle.  If we take its
radius R and lay it onto the circumference of
the circle, we will create an angle whose arc
length is equal to R (Figure 8.1a).  Any angle
that satisfies this criterion is said to have
an angular measure of one radian.

Put another way, a one radian angle
subtends an arc length ∆ s equal to the
radius of the circle (R).

b.)  With this definition, a one-half
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radian angle subtends an arc length equal to (1/2)R (see Figure 8.1b); a two
radian angle subtends an arc length equal to 2R (see Figure 8.1c); and a
general ∆θ  radian angle subtends an arc length ∆ s equal to R ∆θ  (see
Figure 8.1d).  In other words, the most general expression relating arc-
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length and angular measure in radians is:

  ∆ s = R ∆θ .

c.)  Just as displacement is measured in meters by coordinate
variables like x and y, angular displacement is measured in radians by
angular coordinate variables like θ 1 and θ 2.

3.)  Angular Velocity:

a.)  A point on a cir-
cle moves from a posi-
tion defined by the angle

  θ1 to  a position defined
by angle   θ 2  in time ∆ t.
Lines are drawn from
the center of rotation to
the point's positions at
t1 and t2 (see Figure
8.2).

b.)  The average an-
gular velocity ωω avg is a
vector quantity that de-
notes the angular dis-
placement (i.e., net
change of angular posi-
tion ∆θ  per unit time ∆ t) over some large time interval.  With units of
radians/second, it is mathematically defined as:

ωω avg =  ∆θθ/ ∆ t.

c.)  Most elementary rotation problems assume rotational motion in the
x-y plane.  Such motion is one dimensional (the body isn't rotating
simultaneously around two axes, just one--see the BIG NOTE below).  As such,
we can ignore the vector symbolism and write the average angular velocity as:

ωavg =  ∆θ / ∆ t ,

where ∆θ  is the net angular displacement of the object and ∆ t is the time
interval over which the motion occurs.
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While this appears to be a scalar equation, it is not.  It matters
whether the body is rotating clockwise or counterclockwise.  We will
account for rotational direction shortly (see BIG NOTE below).

d.)  Big Note and preamble to direction of rotation discussion:

i.)  A TRANSLATIONAL velocity vector is designed to give a reader
three things: the magnitude of the velocity (i.e., the number of meters
per second at which the object is moving); the axis or combination of
axes along which the motion proceeds (unit vectors do this); and the
positive or negative sense of the direction along those axes.

Example:  A velocity vector v = -3i tells us the object in question is
traveling at 3 m/s along the x axis in the negative direction.

ii.)  A ROTATIONAL velocity vector is also designed to give the reader
three things: the magnitude of the rotational velocity (i.e., the number of
radians per second through which the body moves); the plane in which the
rotation occurs (i.e., does the rotation occur in the x-y plane or the x-z plane
or some combination thereof); and the directional sense of the rotation (i.e.,
is the body rotating clockwise or counterclockwise?).

iii.)  Bottom line:  The notation used to define the rotational velocity
vector needs to convey different information than does the notation used to
define a translational velocity vector.  The format used to convey the
rotational information required is outlined below.

e.)  Rotational direction:

i.)  Consider a disk rotating in the x-y plane (this is the plane in
which almost all of your future problems will be set).  The magnitude of
its angular velocity is, say, a constant ω  = 5 radians/second.  Notice that
although the instantaneous, translational direction-of-motion of each
piece of the disk is constantly changing as the disk rotates, the axis
about which the disk rotates always stays oriented in the same direction.

ii.)  The DIRECTION of an angular velocity vector is defined as the
direction of the axis about which the rotation occurs.

iii.)  We have already decided that the direction about which our
example's rotation occurs is along the z axis; the angular velocity vector
for the problem is, therefore:

        ωω  = (5 radians/second)k,
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where k is the unit vector in the z direction.

iv.)  We have just developed a clever way to mathematically convey
the fact that a rotation is in the x-y plane.  We have done so by
attaching to the angular velocity magnitude a unit vector that defines
the axis about which the motion occurs.

Put in a little dif-
ferent context, we have
earmarked the plane of
rotation by defining the
direction perpendicular to
that plane (the z-direction
is perpendicular to the x-y
plane).

v.)  We still have not
designated a way to define
the sense of the motion (i.e.,
whether the rotation is
clockwise or counter-
clockwise).  Assuming we
are looking at motion in
the x-y plane, these two
possibilities are covered
nicely by assigning a
positive or negative sign to
the k axis unit vector be-
ing used to define the axis
of rotation.  That is:

BY DEFINITION,
CLOCKWISE
ROTATIONS IN THE x-y
PLANE ARE DEFINED
AS HAVING UNIT
VECTOR DIRECTIONS
OF -k, WHEREAS
COUNTERCLOCKWISE
ROTATIONS ARE
DEFINED AS HAVING
UNIT VECTOR
DIRECTIONS OF +k (see
Figures 8.3a and 8.3b for a summary of this information).



Ch. 8--Rotn. Motn. I

239

Note:  This formalism is not as off-the-wall as it probably seems.  Rotate
a screw counterclockwise and it will proceed upward out of the plane in which it is
embedded (that is how you unscrew a screw).  Define that plane with a standard,
right-handed, x-y axis and the screw is found to unscrew in the +k direction.  A
screw rotated clockwise will proceed into the plane in the -k direction.

As long as we always use a right-handed coordinate system (the standard
within mathematics these days), the notation works nicely.

vi.)  Mathematicians have created a mental tool by which one can
remember this rotational formalism.  Called the right-hand rule, it
follows below:

Mentally place your right hand on the rotating disk so that when
you curl your fingers, they follow the direction of the disk's rotation.
Once in the correct position, extend your thumb perpendicularly out
away from your fingers (i.e., in a "hitchhiker's" position).  If the thumb
points upward, the direction of the angular velocity is in the +k
direction.  If you have to flip your hand over to execute the curl, your
thumb will point downward into the plane and the direction of angular
velocity will be in the -k direction.

vii.)  In summary, if our disk were rotating at 5 radians per second
in the clockwise direction in the x-y plane, the angular velocity vector
would be:

ωω  = (5 radians/second)(-k),

which, for simplicity, would probably be written as:

ωω  = -5 rad/sec k.

Note:  As all our problems will be one-dimensional (i.e., rotation in the x-y
plane), there is no need to include the k part of this representation when solving
problems.  IT IS IMPORTANT TO KEEP TRACK OF THE SIGN, THOUGH.  As
such, this angular velocity vector would normally be written as ω  = -5 rad/sec.

4.)  Instantaneous angular velocity ω  for one-dimensional motion is defined
as a measure of an object's displacement per unit time (i.e., its rate of angular
travel), measured at a particular point in time.

a)  Mathematically, instantaneous angular velocity (referred to as
angular velocity from here on) is defined as:
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ω = lim∆θ→0

∆θ
∆t( )

  =
dθ

dt .

b.)  Example:  If θ  = at3 - 4bt, then ω  = d(at3 - 4bt)/dt = 3at2- 4b.

5.)  Average angular acceleration α avg for one-dimensional rotation is
defined as the rate at which the angular velocity changes per unit time.  It is
mathematically defined as:

αavg =  ∆ ω / ∆ t.

Its units are "radians-per-
second-per-second."

Note:  Again, this is a
vector quantity even though we
have not included its associated
unit vector.

a.)  Example:  A man
has an angular velocity

  ω 1  = (3 rad/sec) when at

  θ1.  Three seconds later,
he is at   θ 2 moving with
an angular velocity   ω 2  = 9
rad/sec (see Figure 8.4).
What is his average
angular acceleration?

Solution:

  aavg = ∆ ω / ∆ t
               = (ω f - ω i)/( ∆ t )
               = (9 rad/s - 3 rad/s)/(3 sec)
               = 2 rad/s2.

6.)  Instantaneous angular acceleration (α ):  a measure of an object's
change-of-angular-velocity per unit time, evaluated at a particular point in time.
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a.)  Mathematically, instantaneous angular acceleration (referred to
as angular acceleration from here on) is defined as:

               
α = lim∆θ→0

∆ω
∆t( )

   =
dω

dt .

b.)  Example:  If ω  = 3bt2- 4c, then α  = d(3bt2- 4c)/dt = 6bt.

7.)  NOTICE:  For every translational parameter, we have identified a
comparable rotational parameter.  Translational position is defined using
coordinates like x and y; angular position is defined using angular coordinates
(θ 's measured in radians).  Velocity is defined as dx/dt in meters/second; angular
velocity is defined as dθ /dt in radians/second.  Acceleration is defined as dv/dt in
meters/second2; angular acceleration is defined as dω /dt in radians/second2.

8.)  Relationship between Angular Motion and Translational Motion:

a.)  Consider a point moving with a constant angular velocity ω  in a
circular path of radius
R.  At time t1, the
point's angular position
is defined by the angle

  θ1.  At time t2, its
angular position is   θ 2

(see Figure 8.5a).

b.)  During the
interval ∆ t, the point
travels a translational
distance equal to the
arc length ∆ s of the
subtended angle ∆θ  =
(  θ 2 -   θ1) (see Figure
8.5b on next page).  We
know from the
definition of radian measure that that arc length is:

   ∆ s = R ∆θ .
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c.)  Dividing both
sides by the time of travel
yields:

     ∆ s/ ∆ t = R ( ∆θ / ∆ t).

i.)  The left-hand
side of this relation-
ship is simply the
magnitude of the in-
stantaneous transla-
tional velocity v of the
point as it moves
along the arc (it is ac-
tually the magnitude
of the average trans-
lational velocity, but
because the point is moving with a constant angular velocity, the
average magnitude and the instantaneous magnitude will be the same).

ii.)  The right-hand side of the equation is the radius of motion
times the magnitude of the instantaneous angular velocity (ω ).

iii.)  In other words, at a given instant the magnitude of a rotating
body's instantaneous translational velocity at a given point will equal
the radius r of the motion  times the magnitude of the body's
instantaneous angular velocity at that same instant.  Mathematically,
this is written:

v = rω .

d.)  Through similar reasoning, the relationship between the
magnitude of a point's instantaneous translational acceleration and the
magnitude of its instantaneous angular acceleration at the same moment is:

a = rα.

B.)  Rotational Kinematic Equations:

1.)  Parallels:

a.)  An object moving under the influence of a constant acceleration has
a velocity versus time graph that looks like the one shown in Figure 8.6.  In
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examining that graph at
the beginning of the year,
we noticed a number of
useful things.

i.)  The slope of
the graph ∆ v/ ∆ t
equals the accelera-
tion of the object.

ii.)  The distance
traveled x2 - x1
between times t1 and
t2 is equal to the
area under the graph.
In fact, our beginning-of-the-year endeavors noted that the area
bounded by the bottom rectangle was v1 ∆ t1, the area bounded by the

triangle was (1/2)a( ∆ t1)2, and that the distance traveled was  (x2 - x1)

= v1 ∆ t1+ (1/2)a( ∆ t1)2.

b.)  Consider now a
body moving in rotational
motion with constant
angular acceleration (see
Figure 8.7).

i.)  Note that the
angular velocity versus
time graph for that
motion looks exactly
like its translational
counterpart shown in
Figure 8.6.  It follows
logically that:

ii.)  The slope of
that graph ∆ω / ∆ t
yields the angular acceleration of the motion;
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iii.)  The area under the graph yields the angular distance traveled

  θ 2  -   θ1.

iv.)  In fact, with the exception of the fact that the v's are replaced by
ω 's and the a's replaced by α 's, everything about Figure 8.6 holds for
Figure 8.7.

c.)  Having observed the parallel between the two systems of motion,
it makes sense that the same reasoning that led to the translational
equation (x2 - x1) = v1 ∆ t1 + (1/2)a( ∆ t1)2 will lead to its rotational image--
a rotational kinematic equation that is exactly like its translational
counterpart but with rotational parameters in place of the translational
parameters.  In fact, we could go through all the derivations we experienced
in deriving the original set of kinematic equations and end up with all of
their rotational doubles.

d.)  This would be a waste of time.  Instead, the general rotational
kinematic equations are presented below next to their general
translational counterparts.

(x2 - x1) = v1 ∆ t + (1/2)a( ∆ t)2 ⇒ (θ2 - θ1) = ω1 ∆ t + (1/2)α( ∆ t)2.   

(x2 - x1) = vavg ∆ t ⇒ (θ2 - θ1) = ωavg ∆ t.

vavg = (v2+v1) / 2 ⇒ ωavg = (ω2+ ω1) / 2.

a = (v2 - v1) / ∆ t    ⇒ α = (ω2 - ω1) / ∆ t.

(v2)2 = (v1)2 + 2a(x2 - x1) ⇒ (ω2)2 = (ω1)2 + 2 α(θ2 - θ1).

2.)  Some Examples:

a.)  Example 1:  A turntable whose angular velocity is 20 rad/s
angularly accelerates at 5 rad/s2 for three seconds.  What is its angular
velocity at the end of that time period?

Solution:   We know the initial angular velocity, the constant angular
acceleration, and the time interval over which the acceleration occurs.  With
that we can write: 

    α = (ω2 - ω1)/ ∆ t
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or            (5 rad/s2) = [ω2 - (20 rad/s)]/(3 sec)
   ⇒   ω2 = 35 rad/s.

b.)  Example 2:  What is the average angular velocity of the turntable
mentioned in Example 1 above as it angularly accelerates from 20 rad/s to
65 rad/s in three seconds?

Solution:  We know the angular velocities at the beginning and end of
the time interval, and we know the angular acceleration is constant:

    ωavg = (ω2+ ω1)/2
= (65 rad/s + 20 rad/s)/2
= 42.5 rad/s.

c.)  Example 3:  Our turntable is found to be at   θ 2 = -26 radians after
having moved with an average angular velocity of -7 rad/s for five seconds.
Where was the turntable at t = 0?

Solution:  We know the final coordinate   θ 2, the average angular
velocity ω avg, and the time of travel ∆ t:

              (θ2 - θ1) = ωavg ∆ t
   ((-26 rad) - θ1) = (-7 rad/s)(5 sec - 0 sec)

    ⇒    θ1 = +9 radians.

Note:  Rotational motion treats signs just as translational motion does.
Keep track of them in the equation and the equations will do everything needed
to solve the problem.

d.)  Example 4:  A turntable capable of angularly accelerating at 12
rad/s2 needs to be given an initial angular velocity if it is to rotate through
a net 400 radians in 6 seconds.  What must its initial angular velocity be?

Solution:  We know the angular acceleration, the angular distance
traveled (  θ 2 -   θ1), and the time of travel.  To determine the initial angular
velocity   ω 1 :

(θ2 - θ1) = ω1 ∆ t + (1/2)α( ∆ t)2

     (400 rad - 0) = ω1(6 sec) + (1/2)(12 rad/s2)(6 sec)2

   ⇒   ω1 = 30.7 rad/s.
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e.)  Example 5:  A turntable angularly accelerates from rest to 110
rad/s in 350 radians.  What is its angular acceleration?

Solution:  We know the initial and final angular velocities and the
angular distance traveled (θ 2 - θ 1).  To get the angular acceleration, we use:

(ω2)2 = (ω1)2 + 2 α(θ2 - θ1)

    ⇒    α = [(ω2)2 - (ω1)2]/[2(θ2 - θ1)]

    = [(110 rad/s)2 - (0)2]/[2(350 rad -0)]
    = 17.29 rad/s2.

C.)  A Plug for Rotational Parameters:

1.)  Why rotational parameters?  Why hassle with an "entirely new
parallel system" when the old translational systems seem to do the job just fine?
The answer is, "Simplicity!"

2.)  Consider a rotating disk.  Every point on the disk moves with some
translational velocity.  But as anyone who has ever played "crack the whip" knows,
the farther out from the axis of rotation, the greater the translational velocity.
Remember, vp = Rp ω .

3.)  What is true but is not so obvious is that although the translational
velocity of various pieces of the disk will differ, the angular velocity of each piece
will be the same NO MATTER WHICH AXIS YOU CHOOSE TO MEASURE
THAT ANGULAR VELOCITY ABOUT.

Confused?  Consider the following two scenarios:

a.)  You are sitting in a chair attached to the center of a disk.  The
chair is constrained to face in the same direction at all times (as the disk
turns, the chair does not turn--you find you are always looking at the Point
X shown in Figure 8.8a on the next page). The disk rotates at a constant
rate through one complete revolution in, say, two seconds.  What is the
disk's angular velocity from the perspective of an axis through the center of
mass (i.e., from where you are sitting)?
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b.)  The angular velocity
will equal the number of
RADIANS through which the
disk travels PER UNIT TIME.
As seen by you, one revolution
is equal to 2  radians and the
angular velocity is:

ωabout cm = (2)/(2 sec)
                  =  rad/sec.

c.)  Your friend has a
similar chair situated on the
disk's perimeter (Point P in
Figure 8.8b).  While you are
experiencing the rotation of
the disk, he is experiencing
the same rotation, with
one big exception.  Being
completely self-involved,
he assumes that all
things revolve around
him.  So as the disk
moves, he sees its center
rotating about himself
and not vice versa.  The
sketch in Figure 8.8b
shows the situation.

From this per-
spective, how does the
disk seem to rotate?  It
seems to make one
complete revolution (2
radians) around Point P
in 2 seconds.  That
means the disk's an-
gular velocity about an
axis through a point on
the perimeter equals:

ωpt.P = (2 rad)/(2 sec)                    (=  rad/sec).
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d.)  Bottom line:  The angular velocity of a rotating object is the same
no matter what axis is used to reference the motion.  The same is true of
angular acceleration and angular displacement.  If you know the value of or
have an expression for a rotational variable about one axis at a given
instant, you know that variable at that instant about all axes on the
rotating body.

D.)  Rotational Inertia (Moment of Inertia):

1.)  Massive bodies have a definite tendency to resist changes in their
motion.  Put a truck and a feather in space, blow hard on both, and you'll find the
feather is quite responsive while the truck just sits there.  Why?  Because the truck
has more inertia--it resists changes in its motion considerably more than does the
feather.  The mass of a body is a quantitative measure of a body's relative
tendency to resist changes in its motion.  That is, saying the body has 2 kilograms
of mass means that it has twice as much inertia as does a 1 kilogram mass.

2.)  Rotating bodies have rotational inertia.  That is, they tend to resist
changes in their rotational motion.  Rotational inertia is mass related--the more
the mass, the greater the rotational inertia--but it is also related to how the
mass is distributed relative to the axis of rotation.  The more the mass is spread
out away from the axis of rotation, the more rotational inertia.  We need to
determine a quantitative expression for the rotational inertia of a massive object.
We will do so by considering the rotational kinetic energy of a spinning disk (you
will not be expected to reproduce the following derivation).

3.)  Consider a disk of mass M and radius
R rotating about its central axis with a constant
angular velocity w.  How much kinetic energy is
wrapped up in the disk's motion?

a.)  Begin by defining the ith bit of
mass mi located a distance ri meters from
the axis of rotation and moving with an
instantaneous translational velocity vi
(Figure 8.9 looks down on the disk from
above).  The kinetic energy of that bit of
mass will be:
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(KE)i = (1/2)mivi
2.

b.)  The total kinetic energy of the entire disk will be the KE sum of all
of the bits.  That is:

  KE = ∑ (KE)i = ∑  [(1/2)mivi
2].

c.)  As we are dealing with a rotating body, it might be useful to
incorporate our rotational parameters into the above expression.
Remembering that the translational velocity v of an object moving with
angular velocity ω  a distance R units from the axis of rotation is v = Rω ,
mi's velocity in rotational parameters must be vi= riω .  Substituting into
the kinetic energy equation yields:

      KE = ∑  [(1/2)mi(riω )2]

                    = 1/2  [ ∑  miri
2]ω2.

d.)  This last expression is interesting because it looks very much like
a kinetic energy equation, rotational style.  That is, normal kinetic energy
has an equation that looks like (1/2)mivi

2.  We would expect a rotational
version to have the same form: 1/2 times some mass related term times the
angular velocity ω  squared.  That is exactly what we have above.

e.)  Notice that the mass related term in the expression above is equal
to ∑  miri

2.  This term is called the moment of inertia of the body (in this
case, about one of its central axes).  Its symbol is I and its size provides us
with a relative measure of the body's rotational inertia.

4.)  The moment of inertia equation
derived above is for systems of individual,
discrete masses.  Examples follow:

a.)  Example 1:  Consider two 3 kg
masses connected by a very light (read
that "massless") bar of length 4 meters
(see Figure 8.10).  Determine the moment
of inertia of the system about an axis
through the system's center of mass.
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Solution:

  I = ∑  miri
2

    = m1r1
2 + m2r2

2

    = (3 kg)(2 m)2 + (3 kg)(2 m)2

       = 24 kg.m2.

b.)  Example 2:  Using the bar and
mass set-up presented in Example 1 above,
determine the moment of inertia for the
system about an axis through one of the
masses (this axis is denoted in Figure 8.11).

Solution:

     I = ∑  mi ri
2

           = m1r1
2 + m2r2

2

   = (3 kg)(0 m)2 + (3 kg) (4 m)2

   = 48 kg.m2.

c.)  Example 3:  Consider the
same set-up as above.  Determine
the moment of inertia about an
axis located 2 meters to the right
of the right-most mass (see Figure
8.12).  Note that the massless rod
would have to be extended out to
the right to accommodate such a
situation.

Solution:
I = ∑  mi ri

2.

      = m1r1
2 + m2r2

2

      = (3 kg)(2 m)2 + (3 kg)(6 m)2

      = 120 kg.m2.

5.)  As the axis of rotation moves farther and farther from the center of
mass, the moment of inertia increases.  In fact, the moment of inertia will always
be a minimum about an axis through the center of mass.  There is a formula that
allows one to determine the moment of inertia about any axis parallel to an axis
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through the center of mass.   Called "the PARALLEL AXIS THEOREM," it states
that the moment of inertia about any axis P is:

     Ip = Icm + Md2,

where Icm is the known moment of inertia about a center of mass axis parallel to P, M
is the total mass in the system, and d is the distance between the two parallel axes.

a.)  Example 4:  In Example 1 above, we calculated the moment of
inertia about the center of mass of our bar and masses system.  Using the
parallel axis theorem, determine the moment of inertia about an axis
through one of the masses (Figure 8.11).

Solution:

Ip = Icm + Md2,

          = (24 kg.m2) + (6 kg)(2 m)2

          = 48 kg.m2.

Again, this is exactly the value calculated in Example 2.

b.)  Example 5:  Determine the moment of inertia for our bar and masses
system about an axis 2 meters to the right of the right-most mass (Figure 8.12):

Ip = Icm + Md2,

          = (24 kg.m2) + (6 kg)(4 m)2

          = 120 kg.m2.

This is exactly the value calculated in Example 3.

6.)  THINK ABOUT WHAT THE MATHEMATICAL OPERATION WE
HAVE BEEN EXAMINING IS ACTUALLY ASKING YOU TO DO.  It says, move
out a distance "r" units from the axis of interest.  If there is mass located at that
distance out, multiply that mass quantity by the square of the distance "r."  Do this
for all possible "r" values, then sum.

The general moment of inertia equation derived above works fine for
systems involving groups of individual masses, but it would be cumbersome for
continuous masses like the disk with which we began.  To determine the moment
of inertia for structures whose mass is extended out over a continuous volume
requires Calculus.  Specifically, we must solve the integral:
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r

FIGURE 8.13

drR

dm =     dA
dA = (2   r)dr

disk

I =
  

r2dm,∫

where dm is the mass found a distance r units from the axis of choice.
The approach for solving this integral is similar to the approach used when

de-termining center of mass quantities for extended objects in the last chapter.

a.)  Example:  Determine the moment
of inertia about an axis through the center
of mass of a flat, homogeneous disk of
mass m and radius R (assume the axis is
perpendicular to the face of the disk).

b.)  Figure 8.13 shows a hoop of
differential mass dm with differential
thickness dr drawn a distance r units from
the disk's center of mass.

c.)  We can define a mass per unit area
function σ  in two ways: macroscopically
and microscopically.

i.)  Macroscopically (i.e., as a
whole):

           σ  = M/[(R2)].

ii.)  Microscopically:

    σ  = dm/dA,

where dm is the differential mass within the differential hoop of
differential area dA.  With this, we can write:

     dm = σdA.

iii.)  Looking at Figure 8.13, we can also write:

     dA = (circumference of hoop)(hoop thickness)
            =                (2r)                                dr.

iv.)  That means:



Ch. 8--Rotn. Motn. I

253

        dm = σdA
        = σ[(2r)dr].

d.)  We are now ready to evaluate the moment of inertia integral:

  

I r dm

r r dr
r

R

=

= π[ ]
∫
∫ =

2

2

0
2  σ( ) .

Substituting σ  = M/[(R2)] and pulling out the constants yields:
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This is the moment of inertia of a solid disk about an axis perpendicular to
the disk's face and through its center of mass.

e.)  There is another way to do this integral.  Instead of defining an
area density function σ  related to the mass behind a given area on the
disk's face, we can define a volume density function ρ  related to the amount
of mass that is actually wrapped up in that volume.

This density function can be expressed in two ways:

i.)  Macroscopically, the volume density can be written as the total
mass divided by the total volume, or:

     ρ  = M/[R2t],

where M is the disk's total mass, R2 is the area of the disk's face, and
t is the thickness of the disk.

ii.) Microscopically, the volume density can be written as the
differential mass divided by the differential volume it occupies, or:

      ρ  = dm/dV,
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FIGURE 8.14

dx

dm =    dx

rod

L

x

axis

where dm is the differential mass wrapped up in the cylindrical shell
(a hoop with depth) and dV is the differential volume of that shell.
Taking the differential face-area 2rdr times the hoop thickness t, we
get, dV = 2rt(dr).  Putting everything together:

ρ  = (dm)/(dV)
    =  (dm)/[2rt(dr)].

iii.)  Substituting in for ρ  (i.e., ρ  = M/R2t) and solving for dm, we get:

dm = ρdV                        (Equation A)
        =ρ[2rt(dr)]
        =[M/(R2t)][2rt(dr)]
        =(2Mr/R2)dr.

This leaves us with the integral:

I = 
  

2M
R2 r3dr

r=0

R

∫ ,

which is the same integral we found when we used the surface-area
approach.

Bottom Line:  When dealing with a symmetrically shaped, homoge-
neous structure, either a volume density or area density function will work.

7.)  Another example:  Determine the
moment of inertia of a rod of length L and
mass M about an axis through the rod's center
of mass and perpendicular to the rod's length.

a.)  Figure 8.14 shows a differential
mass dm within a differential length
dx located a distance x units from the
rod's center of mass.

b.)  Note that we could have
defined either a volume or area density
function for this structure.  The reason we didn't?  The mass is essentially
distributed LINEARLY out from the axis of interest.  As such, it is easier
to define a linear density function λ  (i.e., a function that tells you the mass
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per unit length along the rod).  From such a function, we can determine an
expression for dm.

c.)  As before, the linear density function λ  can be expressed in two
ways: microscopically and macroscopically.

i.)  Looking at the entire structure macroscopically, the linear
density can be written as:

     λ  = M/L,

where M is the rod's total mass and L is its total length.

ii.)  Looking microscopically, the linear density can be written as:

     λ  = dm/dx,

where dm is the differential mass wrapped up in the differential
length dx.  Putting everything together, we get:

     dm = λ dx
= (M/L)dx.

iii.)  Letting r become x, the moment of inertia integral yields:
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This is the moment of inertia about an axis perpendicular to, and through
the center of mass of, a rod of mass M and length L.

Note:  We could have used a volume or area density function on this
problem and all would have come out the same.  The extra variables needed to
define these functions would have canceled out in the integral, just as was the
case in the earlier example.

Bottom line:  It really doesn't matter which kind of function you use.  You
will end up with the same moment of inertia integral with each of the approaches,
assuming you do each correctly.

8.)  A list of commonly used moment of inertia expressions is provided in
the table shown on the next page.

Note:  Do NOT memorize the moment of inertia expressions found in the
chart.  They are provided for convenience only.  If a moment of inertia term is
required on your next test, it will either be provided or you will be asked
specifically to derive it.

9.)  Parting shot:  General definitions, the concept of moment of  inertia,
and the rotational kinematic equations all have their place in your understanding
of rotational motion.  Nevertheless, the real players-with-power are the
rotational versions of Newton's Second Law, energy considerations, and the concept
of angular momentum.  Although the chapter you are now completing is
important in the sense that it presents background, the warm-up is over.  The
next chapter will get to the vegetables of the matter.

NOTE:  SEE NEXT PAGE FOR MOMENT OF INERTIA CHART.
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       Ring or
Annular Cylinder
about central axis

   Thin spherical
  shell about any
     central axis

I = (2/3) MR
2

          Solid
sphere about any
    central axis

I = (2/5) MR
2

Hoop about
central axis

I = MR
2

R

Hoop about
  diameter

I = (1/2) MR
2

  Thin rod about
 axis at rod's end
and perpendicular
   to central axis

I = (1/12) ML
2 I = (1/3) ML

2

 Solid cylinder
(or disk) about
    cylinder's 
  central axis

I = (1/2) M(R  +R  )
2 2

21 I = (1/2) MR
2

1

2
R

R

L

  Thin rod about
 axis through rod's
      center and
    perpendicular
    to central axis

I = (1/12) M(a  + b ) I = (1/4) MR  + (1/12) ML 

  Slab about axis
   through center
and perpendicular
     to slab's face

  Disk or Solid
 Cylinder about
central diameter

2 2 2 2

b

a

R

R

L

MOMENT OF INERTIA EXPRESSIONS

FOR VARIOUS FORMS



258

axis of rotation
axis perpendicular 

to the page

Part "a" Part "b"

FIGURE I

QUESTIONS

8.1)  Note:  Although this question is somewhat complex, it has been
included to test your ability to determine moment of inertia quantities for
complex structures.  Try it, but don't spend hordes of time on it . . . and if you get
it set up but can't do the integral, don't
worry about it.

A half disk has a radius R and
area density ky, where k is a constant
having the appropriate units and a
magnitude equal to one.  Determine the
moment of inertia for the body:

a.)  About a horizontal axis
running along the bottom of the
hemisphere (i.e., along the diam-
eter), and

b.)  About an axis perpendicular to the face and through the center of
the circle defining the hemisphere's arc.

8.2)  An automobile whose wheel radius is .3 meters moves at 54 km/hr.
The car applies its brakes uniformly, slowing to 4 m/s over a 50 meter distance.

a.)  Show that 54 km/hr is equal to 15 m/s.
b.)  Show that a 15 m/s car speed corresponds to a wheel angular

velocity of 50 radians/second and that 4 m/s corresponds to 13.33 rad/sec.
c.)  Show that a translational displacement of 50 meters corresponds to

a wheel angular displacement of 166.7 radians.
d.)  Using rotational kinematics, determine the angular acceleration of

one wheel.
e.)  Using the information gleaned in Part d, determine the

translational acceleration of the car.
f.)  Knowing ∆θ , use rotational kinematics to determine the time

interval required for the execution of the slow-down.
g.)  Knowing ω 2, use rotational kinematics to determine the time

interval required for the slow-down.  Does your solution match the one
determined in Part f?

h.)  Determine the average angular velocity of one wheel during the
slow-down.

i.)  Using rotational kinematics, determine the angular displacement of
the wheels during the first .5 seconds of the slow-down.
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j.)  Determine how far the car traveled during the first .5 seconds of the
slow-down.

k.)  Without using the time interval, determine the wheel's angular
velocity after the first .5 seconds of the slow-down.

l.)  Determine the angular displacement of one wheel between times t
= .5 seconds and t = .7 seconds.

m.)  Once the car has slowed to 4 m/s, it begins to pick up speed.  Over a
3 second period, it reaches a wheel angular velocity of 20 rad/sec.  Using
rotational kinematics, determine how far the car will move during that
time period.

8.3)  The earth has a mass of 5.98x1024 kilograms, a period of
approximately 24 hours (the period is the time required for one rotation about its
axis), and a radius of 6.37x106 meters.

a.)  What is the earth's angular velocity?
b.)  What is the translational velocity of a point on the equator?
c.)  What is the translational velocity of a point on the earth's surface

located at an angle 60o relative to a line from its center through its
equator?

d.)  Assuming it is a solid, homogeneous sphere, what is the earth's
moment of inertia about its axis?
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